How Are Oatmeal & Carpets Connected?
In the 1850s, the first oatmeal mill began operation in the United States. Over the next few decades, hot, creamy oatmeal became a popular breakfast cereal across the country. By the early 1900s, oatmeal was getting some stiff competition from newly invented cold breakfast cereals such as cornflakes. Hot or cold, cereal had become a breakfast staple. But the processing of oats and corn for cereal leaves behind waste products—oat hulls and corncobs. In 1922, a cereal company discovered it could do something useful with these waste products. The company used oat hulls to make a substance called furfural. Today, furfural also is made from corncobs and other cereal waste products. Manufacturers use furfural in the production of synthetic rubber, plastic, and nylon—including the nylon that goes into carpets.

Visit unit projects at glencoe.com to find project ideas and resources. Projects include:

- **Career** You are an environmental scientist as you design your own ecosystem-interaction web to demonstrate relationships from birth to death of your specific organism.
- **Technology** Chart your research results on the manufacturing of different materials. Compare cost, energy use, resources, and environmental concerns.
- **Model** Design your own two-week personal conservation project. Decide how you can make a difference as you reduce, reuse, and recycle.

Investigate the **Barrier Islands** ecosystem, then form an opinion as to whether developers should build on these environmentally fragile islands.
Living things on this coast directly or indirectly depend on nonliving things, such as sunlight, water, and rocks, for energy and raw materials needed for their life processes. In this chapter, you will read how these and other nonliving things affect life on Earth.

Science Journal List all the nonliving things that you can see in this picture in order of importance. Explain your reasoning for the order you chose.
Earth Has Many Ecosystems

Do you live in a dry, sandy region covered with cactus plants or desert scrub? Is your home in the mountains? Does snow fall during the winter? In this chapter, you’ll learn why the nonliving factors in each ecosystem are different. The following lab will get you started.

1. Locate your city or town on a globe or world map. Find your latitude. Latitude shows your distance from the equator and is expressed in degrees, minutes, and seconds.
2. Locate another city with the same latitude as your city but on a different continent.
3. Locate a third city with latitude close to the equator.
4. Using references, compare average annual precipitation and average high and low temperatures for all three cities.
5. **Think Critically** Hypothesize how latitude affects average temperatures and rainfall.

Nonliving Factors Make the following Foldable to help you understand the cause and effect relationships within the nonliving environment.

STEP 1 Fold two vertical sheets of paper in half from top to bottom. Cut the papers in half along the folds.

STEP 2 Discard one piece and fold the three vertical pieces in half from top to bottom.

STEP 3 Turn the papers horizontally. Tape the short ends of the pieces together (overlapping the edges slightly).

STEP 4 On one side, label the folds: **Nonliving**, **Water**, **Soil**, **Wind**, **Temperature**, and **Elevation**. Draw a picture of a familiar ecosystem on the other side.

Sequence As you read the chapter, write on the folds how each nonliving factor affects the environment that you draw.
Environmental Factors

Living organisms depend on one another for food and shelter. The leaves of plants provide food and a home for grasshoppers, caterpillars, and other insects. Many birds depend on insects for food. Dead plants and animals decay and become part of the soil. The features of the environment that are alive, or were once alive, are called **biotic** (bi AH tihk) factors. The term *biotic* means “living.”

Biotic factors are not the only things in an environment that are important to life. Most plants cannot grow without sunlight, air, water, and soil. Animals cannot survive without air, water, or the warmth that sunlight provides. The nonliving, physical features of the environment are called **abiotic** (ay bi AH tihk) factors. The prefix *a* means “not.” The term *abiotic* means “not living.” Abiotic factors include air, water, soil, sunlight, temperature, and climate. The abiotic factors in an environment often determine which kinds of organisms can live there. For example, water is an important abiotic factor in the environment, as shown in **Figure 1**.

Figure 1 Abiotic factors—air, water, soil, sunlight, temperature, and climate—influence all life on Earth.
Air

Air is invisible and plentiful, so it is easily overlooked as an abiotic factor of the environment. The air that surrounds Earth is called the **atmosphere**. Air contains 78 percent nitrogen, 21 percent oxygen, 0.94 percent argon, 0.03 percent carbon dioxide, and trace amounts of other gases. Some of these gases provide substances that support life.

Carbon dioxide (CO₂) is required for photosynthesis. Photosynthesis—a series of chemical reactions—uses CO₂, water, and energy from sunlight to produce sugar molecules. Organisms, like plants, that can use photosynthesis are called producers because they produce their own food. During photosynthesis, oxygen is released into the atmosphere.

When a candle burns, oxygen from the air chemically combines with the molecules of candle wax. Chemical energy stored in the wax is converted and released as heat and light energy. In a similar way, cells use oxygen to release the chemical energy stored in sugar molecules. This process is called respiration. Through respiration, cells obtain the energy needed for all life processes. Air-breathing animals aren’t the only organisms that need oxygen. Plants, some bacteria, algae, fish, and other organisms need oxygen for respiration.

Water

Water is essential to life on Earth. It is a major ingredient of the fluid inside the cells of all organisms. In fact, most organisms are 50 percent to 95 percent water. Respiration, digestion, photosynthesis, and many other important life processes can take place only in the presence of water. As **Figure 2** shows, environments that have plenty of water usually support a greater diversity of and a larger number of organisms than environments that have little water.

Figure 2 Water is an important abiotic factor in deserts and rain forests.

Life in deserts is limited to species that can survive for long periods without water.

Thousands of species can live in lush rain forests where rain falls almost every day.
Soil

Soil is a mixture of mineral and rock particles, the remains of dead organisms, water, and air. It is the topmost layer of Earth’s crust, and it supports plant growth. Soil is formed, in part, of rock that has been broken down into tiny particles.

Soil is considered an abiotic factor because most of it is made up of nonliving rock and mineral particles. However, soil also contains living organisms and the decaying remains of dead organisms. Soil life includes bacteria, fungi, insects, and worms. The decaying matter found in soil is called humus. Soils contain different combinations of sand, clay, and humus. The type of soil present in a region has an important influence on the kinds of plant life that grow there.

Sunlight

All life requires energy, and sunlight is the energy source for almost all life on Earth. During photosynthesis, producers convert light energy into chemical energy that is stored in sugar molecules. Consumers are organisms that cannot make their own food. Energy is passed to consumers when they eat producers or other consumers. As shown in Figure 3, photosynthesis cannot take place if light is never available.

Determining Soil Makeup

Procedure

2. Put the soil in a quart jar or similar container that has a lid.
3. Fill the container with water and add 1 teaspoon of dishwashing liquid.
4. Put the lid on tightly and shake the container.
5. After 1 min, measure and record the depth of sand that settled on the bottom.
6. After 2 h, measure and record the depth of silt that settles on top of the sand.
7. After 24 h, measure and record the depth of the layer between the silt and the floating organic matter.

Analysis

1. Clay particles are so small that they can remain suspended in water. Where is the clay in your sample?
2. Is sand, silt, or clay the greatest part of your soil sample?

Figure 3 Photosynthesis requires light. Little sunlight reaches the shady forest floor, so plant growth beneath trees is limited. Sunlight does not reach into deep lake or ocean waters. Photosynthesis can take place only in shallow water or near the water’s surface.

Infer how fish that live at the bottom of the deep ocean obtain energy.
Temperature

Sunlight supplies life on Earth with light energy for photosynthesis and heat energy for warmth. Most organisms can survive only if their body temperatures stay within the range of 0°C to 50°C. Water freezes at 0°C. The penguins in Figure 4 are adapted for survival in the freezing Antarctic. Camels can survive the hot temperatures of the Arabian Desert because their bodies are adapted for staying cool. The temperature of a region depends in part on the amount of sunlight it receives. The amount of sunlight depends on the land’s latitude and elevation.

Figure 4 Temperature is an abiotic factor that can affect an organism’s survival.

The penguin has a thick layer of fat to hold in heat and keep the bird from freezing. These emperor penguins huddle together for added warmth.

The Arabian camel stores fat only in its hump. This way, the camel loses heat from other parts of its body, which helps it stay cool in the hot desert.

Figure 5 Because Earth is curved, latitudes farther from the equator are colder than latitudes near the equator.

What does sunlight provide for life on Earth?

Latitude In this chapter’s Launch Lab, you discovered that temperature is affected by latitude. You found that cities located at latitudes farther from the equator tend to have colder temperatures than cities at latitudes nearer to the equator. As Figure 5 shows, polar regions receive less of the Sun’s energy than equatorial regions. Near the equator, sunlight strikes Earth directly. Near the poles, sunlight strikes Earth at an angle, which spreads the energy over a larger area.
Elevation If you have climbed or driven up a mountain, you probably noticed that the temperature got cooler as you went higher. A region’s elevation, or distance above sea level, affects its temperature. Earth’s atmosphere acts as insulation that traps the Sun’s heat. At higher elevations, the atmosphere is thinner than it is at lower elevations. Air becomes warmer when sunlight heats molecules in the air. Because there are fewer molecules at higher elevations, air temperatures there tend to be cooler.

At higher elevations, trees are shorter and the ground is rocky, as shown in Figure 6. Above the timberline—the elevation beyond which trees do not grow—plant life is limited to low-growing plants. The tops of some mountains are so cold that no plants can survive. Some mountain peaks are covered with snow year-round.

Figure 6 The stunted growth of these trees is a result of abiotic factors.

Solve for an Unknown

1. Temperatures on another mountain are 33°C at sea level, 31°C at 125 m, 29°C at 250 m, and 26°C at 425 m. Graph the data and predict the temperature at 550 m.

2. Predict what the temperature would be at 375 m.

TEMPERATURE CHANGES You climb a mountain and record the temperature every 1,000 m of elevation. The temperature is 30°C at 304.8 m, 25°C at 609.6 m, 20°C at 914.4 m, 15°C at 1,219.2 m, and 5°C at 1,828.8 m. Make a graph of the data. Use your graph to predict the temperature at an altitude of 2,133.6 m.

Solution

1. This is what you know: The data can be written as ordered pairs (elevation, temperature). The ordered pairs for these data are (304.8, 30), (609.6, 25), (914.4, 20), (1,219.2, 15), (1,828.8, 5).

2. This is what you want to find: Predict the temperature at an elevation of 2,133.6 m.

3. This is what you need to do: Graph the data by plotting elevation on the x-axis and temperature on the y-axis.

4. Predict the temperature at 2,133.6 m: Extend the graph line to predict the temperature at 2,133.6 m.

Practice Problems

1. Temperatures on another mountain are 33°C at sea level, 31°C at 125 m, 29°C at 250 m, and 26°C at 425 m. Graph the data and predict the temperature at 550 m.

2. Predict what the temperature would be at 375 m.

For more practice, visit glencoe.com
Climate

In Fairbanks, Alaska, winter temperatures may be as low as \(-52^\circ C\), and more than a meter of snow might fall in one month. In Key West, Florida, snow never falls and winter temperatures rarely dip below 5°C. These two cities have different climates. **Climate** refers to an area’s average weather conditions over time, including temperature, rainfall or other precipitation, and wind.

For the majority of living things, temperature and precipitation are the two most important components of climate. The average temperature and rainfall in an area influence the type of life found there. Suppose a region has an average temperature of 25°C and receives an average of less than 25 cm of rain every year. It is likely to be the home of cactus plants and other desert life. A region with similar temperatures that receives more than 300 cm of rain every year is probably a tropical rain forest.

Wind Heat energy from the Sun not only determines temperature, but also is responsible for the wind. The air is made up of molecules of gas. As the temperature increases, the molecules spread farther apart. As a result, warm air is lighter than cold air. Colder air sinks below warmer air and pushes it upward, as shown in Figure 7. These motions create air currents that are called wind.

![Figure 7](image_url)

Farmer Changes in weather have a strong influence in crop production. Farmers sometimes adapt by changing planting and harvesting dates, selecting a different crop, or changing water use. In your Science Journal, describe another profession affected by climate.
Self Check

1. **Compare and contrast** biotic factors and abiotic factors in ecosystems.

2. **Explain** why soil is considered an abiotic factor and a biotic factor.

3. **Think Critically** On day 1, you hike in shade under tall trees. On day 2, the trees are shorter and farther apart. On day 3, you see small plants but no trees. On day 4, you see snow. What abiotic factors might contribute to these changes?

 - **Hot Words Hot Topics:** Bk 1 pp. 283-284, 396

4. **Use an Electronic Spreadsheet** Obtain two months of temperature and precipitation data for two cities in your state. Enter the data in a spreadsheet and calculate average daily temperature and precipitation. Use your calculations to compare the two climates.

Figure 8 In Washington State, the western side of the Cascade Mountains receives an average of 101 cm of rain each year. The eastern side of the Cascades is in a rain shadow that receives only about 25 cm of rain per year.

The Rain Shadow Effect The presence of mountains can affect rainfall patterns. As Figure 8 shows, wind blowing toward one side of a mountain is forced upward by the mountain's shape. As the air nears the top of the mountain, it cools. When air cools, the moisture it contains falls as rain or snow. By the time the cool air crosses over the top of the mountain, it has lost most of its moisture. The other side of the mountain range receives much less precipitation. It is not uncommon to find lush forests on one side of a mountain range and desert on the other side.

Summary

Environmental Factors
- Organisms depend on one another as well as sunlight, air, water, and soil.

Air, Water, and Soil
- Some of the gases in air provide substances to support life.
- Water is a major component of the cells in all organisms.
- Soil supports plant growth.

Sunlight, Temperature, and Climate
- Light energy supports almost all life on Earth.
- Most organisms require temperature between 0°C and 50°C to survive.
- For most organisms, temperature and precipitation are the two most important components of climate.
Besides abiotic factors, such as rock particles and minerals, soil also contains biotic factors, including bacteria, molds, fungi, worms, insects, and decayed organisms. Crumbly, dark brown soil contains a high percentage of humus that is formed primarily from the decayed remains of plants, animals, and animal droppings. In this lab, you will cultivate your own humus.

Real-World Question

How does humus form?

Goals

- Observe the formation of humus.
- Observe biotic factors in the soil.
- Infer how humus forms naturally.

Materials

- widemouthed jar
- water
- soil marker
- grass clippings or green leaves
- metric ruler
- graduated cylinder

Safety Precautions

Wash your hands thoroughly after handling soil, grass clippings, or leaves.

| Humus Formation |
|-----------------|------------------|
| **Date** | **Observations** |
| **Do not write in this book.** | |
| **Answers will vary.** | |

Procedure

1. Copy the data table below into your Science Journal.
2. Place 4 cm of soil in the jar. Pour 30 mL of water into the jar to moisten the soil.
3. Place 2 cm of grass clippings or green leaves on top of the soil in the jar.
4. Use a marker to mark the height of the grass clippings or green leaves in the jar.
5. Put the jar in a sunny place. Every other day, add 30 mL of water to it. In your Science Journal, write a prediction of what you think will happen in your jar.
6. Observe your jar every other day for four weeks. Record your observations in your data table.

Conclude and Apply

1. Describe what happened during your investigation.
2. Infer how molds and bacteria help the process of humus formation.
3. Infer how humus forms on forest floors or in grasslands.

Communicating Your Data

Compare your humus farm with those of your classmates. With several classmates, write a recipe for creating the richest humus. Ask your teacher to post your recipe in the classroom. For more help, refer to the Science Skill Handbook.
The Cycles of Matter

Imagine an aquarium containing water, fish, snails, plants, algae, and bacteria. The tank is sealed so that only light can enter. Food, water, and air cannot be added. Will the organisms in this environment survive? Through photosynthesis, plants and algae produce their own food. They also supply oxygen to the tank. Fish and snails take in oxygen and eat plants and algae. Wastes from fish and snails fertilize plants and algae. Organisms that die are decomposed by the bacteria. The organisms in this closed environment can survive because the materials are recycled. A constant supply of light energy is the only requirement.

Earth’s biosphere also contains a fixed amount of water, carbon, nitrogen, oxygen, and other materials required for life. These materials cycle through the environment and are reused by different organisms.

The Water Cycle

If you leave a glass of water on a sunny windowsill, the water will evaporate. Evaporation takes place when liquid water changes into water vapor, which is a gas, and enters the atmosphere, shown in Figure 9. Water evaporates from the surfaces of lakes, streams, puddles, and oceans. Water vapor enters the atmosphere from plant leaves in a process known as transpiration (trans puh RAY shun). Animals release water vapor into the air when they exhale. Water also returns to the environment from animal wastes.
Condensation Water vapor that has been released into the atmosphere eventually comes into contact with colder air. The temperature of the water vapor drops. Over time, the water vapor cools enough to change back into liquid water. The process of changing from a gas to a liquid is called condensation. Water vapor condenses on particles of dust in the air, forming tiny droplets. At first, the droplets clump together to form clouds. When they become large and heavy enough, they fall to the ground as rain or other precipitation. As the diagram in Figure 10 shows, the water cycle is a model that describes how water moves from the surface of Earth to the atmosphere and back to the surface again.

Water Use Data about the amount of water people take from reservoirs, rivers, and lakes for use in households, businesses, agriculture, and power production is shown in Table 1. These actions can reduce the amount of water that evaporates into the atmosphere. They also can influence how much water returns to the atmosphere by limiting the amount of water available to plants and animals.

<table>
<thead>
<tr>
<th>Water Use</th>
<th>Millions of Gallons per Day</th>
<th>Percent of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homes and Businesses</td>
<td>41,600</td>
<td>12.2</td>
</tr>
<tr>
<td>Industry and Mining</td>
<td>28,000</td>
<td>8.2</td>
</tr>
<tr>
<td>Farms and Ranches</td>
<td>139,200</td>
<td>40.9</td>
</tr>
<tr>
<td>Electricity Production</td>
<td>131,800</td>
<td>38.7</td>
</tr>
</tbody>
</table>

Figure 10 The water cycle involves evaporation, condensation, and precipitation. Water molecules can follow several pathways through the water cycle. Identify as many water cycle pathways as you can from this diagram.
The Nitrogen Cycle

The element nitrogen is important to all living things. Nitrogen is a necessary ingredient of proteins. Proteins are required for the life processes that take place in the cells of all organisms. Nitrogen is also an essential part of the DNA of all organisms. Although nitrogen is the most plentiful gas in the atmosphere, most organisms cannot use nitrogen directly from the air. Plants need nitrogen that has been combined with other elements to form nitrogen compounds. Through a process called nitrogen fixation, some types of soil bacteria can form the nitrogen compounds that plants need. Plants absorb these nitrogen compounds through their roots. Animals obtain the nitrogen they need by eating plants or other animals. When dead organisms decay, the nitrogen in their bodies returns to the soil or to the atmosphere. This transfer of nitrogen from the atmosphere to the soil, to living organisms, and back to the atmosphere is called the nitrogen cycle, shown in Figure 11.

Reading Check

What is nitrogen fixation?

Figure 11 During the nitrogen cycle, nitrogen gas from the atmosphere is converted to a soil compound that plants can use. State one source of recycled nitrogen.
Comparing Fertilizers

Procedure
1. Examine the three numbers (e.g., 5-10-5) on the labels of three brands of houseplant fertilizer. The numbers indicate the percentages of nitrogen, phosphorus, and potassium, respectively, that the product contains.
2. Compare the prices of the three brands of fertilizer.
3. Compare the amount of each brand needed to fertilize a typical houseplant.

Analysis
1. Identify the brand with the highest percentage of nitrogen.
2. Calculate which brand is the most expensive source of nitrogen. The least expensive.

Soil Nitrogen

Human activities can affect the part of the nitrogen cycle that takes place in the soil. If a farmer grows a crop, such as corn or wheat, most of the plant material is taken away when the crop is harvested. The plants are not left in the field to decay and return their nitrogen compounds to the soil. If these nitrogen compounds are not replaced, the soil could become infertile. You might have noticed that adding fertilizer to soil can make plants grow greener, bushier, or taller. Most fertilizers contain the kinds of nitrogen compounds that plants need for growth. Fertilizers can be used to replace soil nitrogen in crop fields, lawns, and gardens. Compost and animal manure also contain nitrogen compounds that plants can use. They also can be added to soil to improve fertility.

Another method farmers use to replace soil nitrogen is to grow nitrogen-fixing crops. Most nitrogen-fixing bacteria live on or in the roots of certain plants. Some plants, such as peas, clover, and beans, including the soybeans shown in Figure 12, have roots with swollen nodules that contain nitrogen-fixing bacteria. These bacteria supply nitrogen compounds to the soybean plants and add nitrogen compounds to the soil.

Figure 12 The swollen nodules on the roots of soybean plants contain colonies of nitrogen-fixing bacteria that help restore nitrogen to the soil. The bacteria depend on the plant for food, while the plant depends on the bacteria to form the nitrogen compounds the plant needs.
Burning fossil fuels and wood releases carbon dioxide into the atmosphere. Air contains carbon in the form of carbon dioxide gas. Plants and algae use carbon dioxide to make sugars, which are energy-rich, carbon-containing compounds. Organisms break down sugar molecules made by plants and algae to obtain energy for life and growth. Carbon dioxide is released as a waste. Carbon—in the form of different kinds of carbon-containing molecules—moves through an endless cycle. The diagram below shows several stages of the carbon cycle. It begins when plants and algae remove carbon from the environment during photosynthesis. This carbon returns to the atmosphere via several carbon-cycle pathways.

When organisms die, their carbon-containing molecules become part of the soil. The molecules are broken down by fungi, bacteria, and other decomposers. During this decay process, carbon dioxide is released into the air. Under certain conditions, the remains of some dead organisms may gradually be changed into fossil fuels such as coal, gas, and oil. These carbon compounds are energy rich.
The Carbon Cycle

Carbon atoms are found in the molecules that make up living organisms. Carbon is an important part of soil humus, which is formed when dead organisms decay, and it is found in the atmosphere as carbon dioxide gas (CO₂). The carbon cycle describes how carbon molecules move between the living and nonliving world, as shown in Figure 13.

The carbon cycle begins when producers remove CO₂ from the air during photosynthesis. They use CO₂, water, and sunlight to produce energy-rich sugar molecules. Energy is released from these molecules during respiration—the chemical process that provides energy for cells. Respiration uses oxygen and releases CO₂. Photosynthesis uses CO₂ and releases oxygen. These two processes help recycle carbon on Earth.

How does carbon dioxide enter the atmosphere?

Human activities also release CO₂ into the atmosphere. Fossil fuels such as gasoline, coal, and heating oil are the remains of organisms that lived millions of years ago. These fuels are made of energy-rich, carbon-based molecules. When people burn these fuels, CO₂ is released into the atmosphere as a waste product. People also use wood for construction and for fuel. Trees that are harvested for these purposes no longer remove CO₂ from the atmosphere during photosynthesis. The amount of CO₂ in the atmosphere is increasing. Extra CO₂ could trap more heat from the Sun and cause average temperatures on Earth to rise.

Summary

The Cycles of Matter

- Earth’s biosphere contains a fixed amount of water, carbon, nitrogen, oxygen, and other materials that cycle through the environment.

The Water Cycle

- Water cycles through the environment using several pathways.

The Nitrogen Cycle

- Some types of bacteria can form nitrogen compounds that plants and animals can use.

The Carbon Cycle

- Producers remove CO₂ from the air during photosynthesis and produce O₂.
- Consumers remove O₂ and produce CO₂.

Self Check

1. Describe the water cycle.
2. Infer how burning fossil fuels might affect the makeup of gases in the atmosphere.
3. Explain why plants, animals, and other organisms need nitrogen.
4. Think Critically Most chemical fertilizers contain nitrogen, phosphorous, and potassium. If they do not contain carbon, how do plants obtain carbon?

Applying Skills

5. Identify and Manipulate Variables and Controls
Describe an experiment that would determine whether extra carbon dioxide enhances the growth of tomato plants.

More Section Review glencoe.com
Converting Energy

All living things are made of matter, and all living things need energy. Matter and energy move through the natural world in different ways. Matter can be recycled over and over again. The recycling of matter requires energy. Energy is not recycled, but it is converted from one form to another. The conversion of energy is important to all life on Earth.

Photosynthesis During photosynthesis, producers convert light energy into the chemical energy in sugar molecules. Some of these sugar molecules are broken down as energy. Others are used to build complex carbohydrate molecules that become part of the producer’s body. Fats and proteins also contain stored energy.

Chemosynthesis Not all producers rely on light for energy. During the 1970s, scientists exploring the ocean floor were amazed to find communities teeming with life. These communities were at a depth of almost 3.2 km and living in total darkness. They were found near powerful hydrothermal vents like the one shown in Figure 14.
Hydrothermal Vents A hydrothermal vent is a deep crack in the ocean floor through which the heat of molten magma can escape. The water from hydrothermal vents is extremely hot from contact with molten rock that lies deep in Earth’s crust.

Because no sunlight reaches these deep ocean regions, plants or algae cannot grow there. How do the organisms living in this community obtain energy? Scientists learned that the hot water contains nutrients such as sulfur molecules that bacteria use to produce their own food. The production of energy-rich nutrient molecules from chemicals is called **chemosynthesis** (kee moh SIHN thuh sus). Consumers living in the hydrothermal vent communities rely on chemosynthetic bacteria for nutrients and energy. Chemosynthesis and photosynthesis allow producers to make their own energy-rich molecules.

Reading Check *What is chemosynthesis?*

Energy Transfer

Energy can be converted from one form to another. It also can be transferred from one organism to another. Consumers cannot make their own food. Instead, they obtain energy by eating producers or other consumers. The energy stored in the molecules of one organism is transferred to another organism. That organism can oxidize food to release energy that it can use for maintenance and growth or is transformed into heat. At the same time, the matter that makes up those molecules is transferred from one organism to another.

Food Chains A food chain is a way of showing how matter and energy pass from one organism to another. Producers—plants, algae, and other organisms that are capable of photosynthesis or chemosynthesis—are always the first step in a food chain. Animals that consume producers such as herbivores are the second step. Carnivores and omnivores—animals that eat other consumers—are the third and higher steps of food chains. One example of a food chain is shown in **Figure 15**.

Figure 15 In this food chain, grasses are producers, marmots are herbivores that eat the grasses, and grizzly bears are consumers that eat marmots. The arrows show the direction in which matter and energy flow. **Infer** what might happen if grizzly bears disappeared from this ecosystem.
Food Webs A forest community includes many feeding relationships. These relationships can be too complex to show with a food chain. For example, grizzly bears eat many different organisms, including berries, insects, chipmunks, and fish. Berries are eaten by bears, birds, insects, and other animals. A bear carcass might be eaten by wolves, birds, or insects. A **food web** is a model that shows all the possible feeding relationships among the organisms in a community. A food web is made up of many different food chains, as shown in Figure 16.

Energy Pyramids
Food chains usually have at least three links, but rarely more than five. This limit exists because the amount of available energy is reduced as you move from one level to the next in a food chain. Imagine a grass plant that absorbs energy from the Sun. The plant uses some of this energy to grow and produce seeds. Some of the energy is stored in the seeds.
Available Energy When a mouse eats grass seeds, energy stored in the seeds is transferred to the mouse. However, most of the energy the plant absorbed from the Sun was used for the plant’s growth. The mouse uses energy from the seed for its own life processes, including respiration, digestion, and growth. Some of this energy was given off as heat. A hawk that eats the mouse obtains even less energy. The amount of available energy is reduced from one feeding level of a food chain to another.

An **energy pyramid**, like the one in **Figure 17**, shows the amount of energy available at each feeding level in an ecosystem. The bottom of the pyramid, which represents all of the producers, is the first feeding level. It is the largest level because it contains the most energy and the largest number of organisms. As you move up the pyramid, the transfer of energy is less efficient and each level becomes smaller. Only about ten percent of the energy available at each feeding level of an energy pyramid is transferred to the next higher level.

Why does the first feeding level of an energy pyramid contain the most energy?

Summary

Converting Energy
- Most producers convert light energy into chemical energy.
- Some producers can produce their own food using energy in chemicals such as sulfur.

Energy Transfer
- Producers convert energy into forms that other organisms can use.
- Food chains show how matter and energy pass from one organism to another.

Energy Pyramids
- Energy pyramids show the amount of energy available at each feeding level.
- The amount of available energy decreases from the base to the top of the energy pyramid.

Self Check

1. **Compare and contrast** a food web and an energy pyramid.
2. **Explain** why there is a limit to the number of links in a food chain.
3. **Think Critically** Use your knowledge of food chains and the energy pyramid to explain why the number of mice in a grassland ecosystem is greater than the number of hawks.
4. **Solve One-Step Equations** A forest has 24,055,000 kilocalories (kcals) of producers, 2,515,000 kcals of herbivores, and 235,000 kcals of carnivores. How much energy is lost between producers and herbivores? Between herbivores and carnivores?
Where does the mass of a plant come from?

Real-World Question

An enormous oak tree starts out as a tiny acorn. The acorn sprouts in dark, moist soil. Roots grow down through the soil. Its stem and leaves grow up toward the light and air. Year after year, the tree grows taller, its trunk grows thicker, and its roots grow deeper. It becomes a towering oak that produces thousands of acorns of its own. An oak tree has much more mass than an acorn. Where does this mass come from? The soil? The air? In this activity, you’ll find out by conducting an experiment with radish plants. Does all of the matter in a radish plant come from the soil?

Goals

- **Measure** the mass of soil before and after radish plants have been grown in it.
- **Measure** the mass of radish plants grown in the soil.
- **Analyze** the data to determine whether the mass gained by the plants equals the mass lost by the soil.

Materials

- 8-oz plastic or paper cup
- Potting soil to fill cup
- Scale or balance
- Radish seeds (4)
- Water
- Paper towels

Safety Precautions
Procedure

1. Copy the data table into your Science Journal.
2. Fill the cup with dry soil.
3. Find the mass of the cup of soil and record this value in your data table.
4. Moisten the soil in the cup. Plant four radish seeds 2 cm deep in the soil. Space the seeds an equal distance apart. Wash your hands.
5. Add water to keep the soil barely moist as the seeds sprout and grow.
6. When the plants have developed four to six true leaves, usually after two to three weeks, carefully remove the plants from the soil. Gently brush the soil off the roots. Make sure all the soil remains in the cup.
7. Spread the plants out on a paper towel. Place the plants and the cup of soil in a warm area to dry out.
8. When the plants are dry, measure their mass and record this value in your data table. Write this number with a plus sign in the Gain or Loss column.
9. When the soil is dry, find the mass of the cup of soil. Record this value in your data table. Subtract the End mass from the Start mass and record this number with a minus sign in the Gain or Loss column.

<table>
<thead>
<tr>
<th>Mass of Soil and Radish Plants</th>
<th>Start</th>
<th>End</th>
<th>Gain (+) or Loss (—)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass of dry soil and cup</td>
<td>75.8 g</td>
<td>75.7 g</td>
<td>0.1 g —</td>
</tr>
<tr>
<td>Mass of dried radish plants</td>
<td>0 g</td>
<td>2.1 g</td>
<td>2.1 g +</td>
</tr>
</tbody>
</table>

Analyze Your Data

1. **Calculate** how much mass was gained or lost by the soil. By the radish plants.
2. Did the mass of the plants come completely from the soil? How do you know?

Conclude and Apply

1. In the early 1600s, a Belgian scientist named J. B. van Helmont conducted this experiment with a willow tree. What is the advantage of using radishes instead of a tree?
2. **Predict** where all of the mass gained by the plants came from.

Communicating Your Data

Compare your conclusions with those of other students in your class. For more help, refer to the Science Skill Handbook.
Extreme Climates

Did you know...

... The greatest snowfall in one year occurred at Mount Baker in Washington State. Approximately 2,896 cm of snow fell during the 1998–99, 12-month snowfall season. That’s enough snow to bury an eight-story building.

Applying Math What was the average monthly snowfall at Mount Baker during the 1998–99 snowfall season?

Hot Words Hot Topics: Bk 1 pp. 89, 90, 204

... The hottest climate in the United States is found in Death Valley, California. In July 1913, Death Valley reached approximately 57°C. As a comparison, a comfortable room temperature is about 20°C.

... The record low temperature of a frigid −89°C was set in Antarctica in 1983. As a comparison, the temperature of a home freezer is about −15°C.

Graph It

Visit glencoe.com to find the average monthly rainfall in a tropical rain forest. Make a line graph to show how the amount of precipitation changes during the 12 months of the year.
Section 1 Abiotic Factors
1. Abiotic factors include air, water, soil, sunlight, temperature, and climate.
2. The availability of water and light influences where life exists on Earth.
3. Soil and climate have an important influence on the types of organisms that can survive in different environments.
4. High latitudes and elevations generally have lower average temperatures.

Section 2 Cycles in Nature
1. Matter is limited on Earth and is recycled through the environment.
2. The water cycle involves evaporation, condensation, and precipitation.

Section 3 Energy Flow
1. Producers make energy-rich molecules through photosynthesis or chemosynthesis.
2. When organisms feed on other organisms, they obtain matter and energy.
3. Matter can be recycled, but energy cannot.
4. Food webs are models of the complex feeding relationships in communities.
5. Available energy decreases as you go to higher feeding levels in an energy pyramid.

This diagram represents photosynthesis in a leaf. Match each letter with one of the following terms: light, carbon dioxide, or oxygen.
Using Vocabulary

abiotic p. 284
biotic p. 284
carbonate cycle p. 297
chemosynthesis p. 299
climate p. 289
condensation p. 293
energy pyramid p. 301
evaporation p. 292
food web p. 300
nitrogen cycle p. 294
nitrogen fixation p. 294
soil p. 286
water cycle p. 293

Which vocabulary word best corresponds to each of the following events?

1. A liquid changes to a gas.
2. Some types of bacteria form nitrogen compounds in the soil.
3. Decaying plants add nitrogen to the soil.
4. Chemical energy is used to make energy-rich molecules.
5. Decaying plants add carbon to the soil.
6. A gas changes to a liquid.
7. Water flows downhill into a stream. The stream flows into a lake, and water evaporates from the lake.
8. Burning coal and exhaust from automobiles release carbon into the air.

Checking Concepts

Choose the word or phrase that best answers the question.

9. Which of the following is an abiotic factor?
 A) penguins C) soil bacteria
 B) rain D) redwood trees

Use the equation below to answer question 10.

10. Which of the following processes is shown in the equation above?
 A) condensation C) burning
 B) photosynthesis D) respiration

\[
\text{CO}_2 + \text{H}_2\text{O} \xrightarrow{\text{light energy}} \text{sugar} + \text{O}_2
\]

11. Which of the following applies to latitudes farther from the equator?
 A) higher elevations B) higher temperatures
 C) higher precipitation levels D) lower temperatures

12. Water vapor forming droplets that form clouds directly involves which process?
 A) condensation C) evaporation
 B) respiration D) transpiration

13. Which one of the following components of air is least necessary for life on Earth?
 A) argon C) carbon dioxide
 B) nitrogen D) oxygen

14. Which group makes up the largest level of an energy pyramid?
 A) herbivores C) decomposers
 B) producers D) carnivores

15. Earth receives a constant supply of which of the following items?
 A) light energy C) nitrogen
 B) carbon D) water

16. Which of these is an energy source for chemosynthesis?
 A) sunlight C) sulfur molecules
 B) moonlight D) carnivores

Use the illustration below to answer question 17.

17. What is the illustration above an example of?
 A) food chain C) energy pyramid
 B) food web D) carbon cycle
18. **Draw a Conclusion** A country has many starving people. Should they grow vegetables and corn to eat, or should they grow corn to feed cattle so they can eat beef? Explain.

19. **Explain** why a food web is a better model of energy flow than a food chain.

20. **Infer** Do bacteria need nitrogen? Why or why not?

21. **Describe** why it is often easier to walk through an old, mature forest of tall trees than through a young forest of small trees.

22. **Explain** why giant sequoia trees grow on the west side of California’s Inyo Mountains and Death Valley, a desert, is on the east side of the mountains.

23. **Concept Map** Copy and complete this food web using the following information: *caterpillars and rabbits eat grasses, raccoons eat rabbits and mice, mice eat grass seeds, and birds eat caterpillars.*

24. **Form a Hypothesis** For each hectare of land, ecologists found 10,000 kcals of producers, 10,000 kcals of herbivores, and 2,000 kcals of carnivores. Suggest a reason why producer and herbivore levels are equal.

25. **Recognize Cause and Effect** A lake in Kenya has been taken over by a floating weed. How could you determine if nitrogen fertilizer runoff from farms is causing the problem?

26. **Poster** Use magazine photographs to make a visual representation of the water cycle.

27. **Energy Budget** Raymond Lindeman, from the University of Minnesota, was the first person to calculate the total energy budget of an entire community at Cedar Bog Lake in MN. He found the total amount of energy produced by producers was 1,114 kilocalories per meter squared per year. About 20% of the 1,114 kilocalories were used up during respiration. How many kilocalories were used during respiration?

28. **Kilocalorie Use** Of the 600 kilocalories of producers available to a caterpillar, the caterpillar consumes about 150 kilocalories. About 25% of the 150 kilocalories is used to maintain its life processes and is lost as heat, while 16% cannot be digested. How many kilocalories are lost as heat? What percentage of the 600 kilocalories is available to the next feeding level?

Use the table below to answer question 29.

<table>
<thead>
<tr>
<th>Mighty Migrators</th>
<th>Distance (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desert locust</td>
<td>4,800</td>
</tr>
<tr>
<td>Caribou</td>
<td>800</td>
</tr>
<tr>
<td>Green turtle</td>
<td>1,900</td>
</tr>
<tr>
<td>Arctic tern</td>
<td>35,000</td>
</tr>
<tr>
<td>Gray whale</td>
<td>19,000</td>
</tr>
</tbody>
</table>

29. **Make and Use Graphs** Climate can cause populations to move from place to place. Make a bar graph of migration distances shown above.
Record your answers on the answer sheet provided by your teacher or on a sheet of paper.

1. The abiotic factor that provides energy for nearly all life on Earth is
 (1) air. (3) water.
 (2) sunlight. (4) soil.

2. Which of the following is characteristic of places at high elevations?
 (1) fertile soil
 (2) fewer molecules in the air
 (3) tall trees
 (4) warm temperatures

3. The air at point C is
 (1) dry and warm.
 (2) dry and cool.
 (3) moist and warm.
 (4) moist and cool.

4. The air at point A is
 (1) dry and warm.
 (2) dry and cool.
 (3) moist and warm.
 (4) moist and cool.

5. What process do plants use to return water vapor to the atmosphere?
 (1) transpiration (3) respiration
 (2) evaporation (4) condensation

6. Clouds form as a result of what process?
 (1) evaporation (3) respiration
 (2) transpiration (4) condensation

7. Which of the following items shown in the diagram contribute to the nitrogen cycle by releasing AND absorbing nitrogen?
 (1) the decaying organism only
 (2) the trees only
 (3) the trees and the grazing cows
 (4) the lightning and the decaying organism

8. Which of the following items shown in the diagram contribute to the nitrogen cycle by ONLY releasing nitrogen?
 (1) the decaying organism only
 (2) the trees only
 (3) the trees and the grazing cows
 (4) the lightning and the decaying organism

9. Where is most of the energy found in an energy pyramid?
 (1) at the top level
 (2) in the middle levels
 (3) at the bottom level
 (4) all levels are the same

10. What organisms remove carbon dioxide gas from the air during photosynthesis?
 (1) consumers (3) herbivores
 (2) producers (4) omnivores
Record your answers on the answer sheet provided by your teacher or on a sheet of paper.

11 Give two examples of abiotic factors and describe how each one is important to biotic factors.

12 Where are nitrogen-fixing bacteria found?

13 Describe two ways that carbon is released into the atmosphere.

14 How are organisms near hydrothermal vents deep in the ocean able to survive?

15 Use a diagram to represent the transfer of energy among these organisms: a weasel, a rabbit, grasses, and a coyote.

16 Explain how a decrease in the amount of sunlight would affect producers that use photosynthesis, and producers that use chemosynthesis.

17 Draw a flowchart that shows how soy beans, deer, and nitrogen-fixing bacteria help cycle nitrogen from the atmosphere, to the soil, to living organisms, and back to the atmosphere.

Use the diagram below to answer questions 18 and 19.

18 What term is used for the diagram above? Explain how the diagram represents energy transfer.

19 Explain how the grass and bear populations would be affected if the marmot population suddenly declined.

20 Compare and contrast an energy pyramid and a food web.

21 What happens to the energy in organisms at the top of an energy pyramid when they die?